Bit-Vector Model Counting using Statistical Estimation

نویسندگان

  • Seonmo Kim
  • Stephen McCamant
چکیده

Approximate model counting for bit-vector SMT formulas (generalizing #SAT) has many applications such as probabilistic inference and quantitative information-flow security, but it is computationally difficult. Adding random parity constraints (XOR streamlining) and then checking satisfiability is an effective approximation technique, but it requires a prior hypothesis about the model count to produce useful results. We propose an approach inspired by statistical estimation to continually refine a probabilistic estimate of the model count for a formula, so that each XOR-streamlined query yields as much information as possible. We implement this approach, with an approximate probability model, as a wrapper around an off-the-shelf SMT solver or SAT solver. Experimental results show that the implementation is faster than the most similar previous approaches which used simpler refinement strategies. The technique also lets us model count formulas over floatingpoint constraints, which we demonstrate with an application to a vulnerability in differential privacy mechanisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Estimation of Required Rotational Torque to Operate Horizontal Directional Drilling Using Rock Engineering Systems

Horizontal directional drilling (HDD) is widely used in soil and rock engineering. In a variety of conditions, it is necessary to estimate the torque required for performing the reaming operation. Nevertheless, there is not presently a convenient method to accomplish this task. In this paper, to overcome this difficulty based on the basic concepts of rock engineering systems (RES), a model for ...

متن کامل

Prediction and search techniques for RD-optimized motion estimation in a very low bit rate video coding framework

Prediction and search techniques are introduced for e cient rate-distortion optimized motion estimation in a very low bit rate video coding framework. For prediction, three types of predictors are considered: mean, weighted mean, and median. Prediction allows us to constrain the motion vector search to a small diamond-shaped area whose center is the predicted motion vector. The size of the sear...

متن کامل

A COMPARISON OF PERFORMANCE OF SEVERAL ARTIFICIAL INTELLIGENCE METHODS FOR ESTIMATION OF REQUIRED ROTATIONAL TORQUE TO OPERATE HORIZONTAL DIRECTIONAL DRILLING

Horizontal Directional Drilling (HDD) is extensively used in geothechnical engineering. In a variety of conditions it is essential to predict the torque required for performing the reaming operation. Nevertheless, there is presently not a convenient method to accomplish this task. To overcome this problem, in this research, the application of computational intelligence methods for data analysis...

متن کامل

The Application of Least Square Support Vector Machine as a Mathematical Algorithm for Diagnosing Drilling Effectivity in Shaly Formations

The problem of slow drilling in deep shale formations occurs worldwide causing significant expenses to the oil industry. Bit balling which is widely considered as the main cause of poor bit performance in shales, especially deep shales, is being drilled with water-based mud. Therefore, efforts have been made to develop a model to diagnose drilling effectivity. Hence, we arrived at graphical cor...

متن کامل

Empirical Mode Decomposition based Adaptive Filtering for Orthogonal Frequency Division Multiplexing Channel Estimation

This paper presents an empirical mode decomposition (EMD) based adaptive filter (AF) for channel estimation in OFDM system.  In this method, length of channel impulse response (CIR) is first approximated using Akaike information criterion (AIC). Then, CIR is estimated using adaptive filter with EMD decomposed IMF of the received OFDM symbol. The correlation and kurtosis measures are used to sel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1712.07770  شماره 

صفحات  -

تاریخ انتشار 2016